Spatio-temporal avalanche forecasting with Support Vector Machines

نویسندگان

  • A. Pozdnoukhov
  • G. Matasci
  • M. Kanevski
  • R. S. Purves
چکیده

This paper explores the use of the Support Vector Machine (SVM) as a data exploration tool and a predictive engine for spatio-temporal forecasting of snow avalanches. Based on the historical observations of avalanche activity, meteorological conditions and snowpack observations in the field, an SVM is used to build a data-driven spatio-temporal forecast for the local mountain region. It incorporates the outputs of simple physics-based and statistical approaches used to interpolate meteorological and snowpack-related data over a digital elevation model of the region. The interpretation of the produced forecast is discussed, and the quality of the model is validated using observations and avalanche bulletins of the recent years. The insight into the model behaviour is presented to highlight the interpretability of the model, its abilities to produce reliable forecasts for individual avalanche paths and sensitivity to input data. Estimates of prediction uncertainty are obtained with ensemble forecasting. The case study was carried out using data from the avalanche forecasting service in the Locaber region of Scotland, where avalanches are forecast on a daily basis during the winter months.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Support Vector Machine for Natural Hazards Forecasting. Case Study: Snow Avalanches

This paper explores the use of Support Vector Machine (SVM) as a predictive engine for natural hazards forecasting. It particularly discusses the issues of incorporating this classification method into a decision-support system for operational use in avalanche forecasting. The recent developments concerned with semi-supervised and transductive SVM-based learning targeted at applications in natu...

متن کامل

Spatio-temporal feature selection for black-box weather forecasting

In this paper, a data-driven modeling technique is proposed for temperature forecasting. Due to the high dimensionality, LASSO is used as feature selection approach. Considering spatio-temporal structure of the weather dataset, first LASSO is applied in a spatial and temporal scenario, independently. Next, a feature is included in the model if it is selected by both. Finally, Least Squares Supp...

متن کامل

The Support Vector Machine for Nonlinear Spatio-Temporal Regression

Due to the increasingly demand for spatio-temporal analysis, time series and spatial statistics are extended to the spatial dimension and the temporal dimension respectively or they are combined via linear regression. However, such linear regression is just a simplification of complicated spatio-temporal associations existing in complex geographical phenomena. In this study, the Support Vector ...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011